Correcting errors in shotgun sequences.

نویسندگان

  • Martti T Tammi
  • Erik Arner
  • Ellen Kindlund
  • Björn Andersson
چکیده

Sequencing errors in combination with repeated regions cause major problems in shotgun sequencing, mainly due to the failure of assembly programs to distinguish single base differences between repeat copies from erroneous base calls. In this paper, a new strategy designed to correct errors in shotgun sequence data using defined nucleotide positions, DNPs, is presented. The method distinguishes single base differences from sequencing errors by analyzing multiple alignments consisting of a read and all its overlaps with other reads. The construction of multiple alignments is performed using a novel pattern matching algorithm, which takes advantage of the symmetry between indices that can be computed for similar words of the same length. This allows for rapid construction of multiple alignments, with no previous pair-wise matching of sequence reads required. Results from a C++ implementation of this method show that up to 99% of sequencing errors can be corrected, while up to 87% of the single base differences remain and up to 80% of the corrected reads contain at most one error. The results also show that the method outperforms the error correction method used in the EULER assembler. The prototype software, MisEd, is freely available from the authors for academic use.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correcting Illumina sequencing errors for human data

Summary: We present a new tool to correct sequencing errors in Illumina data produced from high-coverage whole-genome shotgun resequencing. It uses a non-greedy algorithm and shows comparable performance and higher accuracy in an evaluation on real human data. This evaluation has the most complete collection of highperformance error correctors so far. Availability and implementation: https://gi...

متن کامل

An Approach to Increasing Reliability Using Syndrome Extension

Computational errors in numerical data processing may be detected efficiently by using parity values associated with real number codes, even when inherent round off errors are allowed in addition to failure disruptions. This paper examines correcting turbo codes by straightforward application of an algorithm derived for finite-field codes, modified to operate over any field. There are syndromes...

متن کامل

The current status and portability of our sequence handling software

I describe the current status of our sequence analysis software. The package contains a comprehensive suite of programs for managing large shotgun sequencing projects, a program containing 61 functions for analysing single sequences and a program for comparing pairs of sequences for similarity. The programs that have been described before have been improved by the addition of new functions and ...

متن کامل

Solving Repeat Problems in Shotgun Sequencing

Shotgun sequencing is the most powerful strategy for large scale sequencing. Two main approaches exist: clone-by-clone and whole genome shotgun (WGS). In the clone-by-clone strategy, overlapping clones are amplified and then sheared in a random fashion. In the WGS approach, a sufficient amount of cells from the target organism are obtained, and the random shearing is performed on extracted DNA....

متن کامل

Gene prediction with Glimmer for metagenomic sequences augmented by classification and clustering

Environmental shotgun sequencing (or metagenomics) is widely used to survey the communities of microbial organisms that live in many diverse ecosystems, such as the human body. Finding the protein-coding genes within the sequences is an important step for assessing the functional capacity of a metagenome. In this work, we developed a metagenomics gene prediction system Glimmer-MG that achieves ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 31 15  شماره 

صفحات  -

تاریخ انتشار 2003